Entropy and renormalized solutions for a nonlinear elliptic problem in Musielak-Orlicz spaces

نویسندگان

چکیده

In this paper, we establish the equivalence of entropy and renormalized solutions second-order elliptic equations with nonlinearities defined by Musielak-Orlicz functions right-hand side from space L1(Ω). nonreflexive Musielak-Orlicz-Sobolev spaces, prove existence uniqueness both Dirichlet problem in domains a Lipschitz boundary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Nonsquareness in Musielak-Orlicz-Bochner Function Spaces

and Applied Analysis 3 Proposition 1.2. Function σ t is μ-measurable. Proof. Pick a dense set {ri}i 1 in 0,∞ and set Bk { t ∈ T : M ( t, 1 2 rk ) 1 2 M t, rk } , qk t rkχBk t k ∈ N . 1.7 It is easy to see that for all k ∈ N, σ t ≥ qk t μ-a.e on T . Hence, supk≥1qk t ≤ σ t . For μ-a.e t ∈ T , arbitrarily choose ε ∈ 0, σ t . Then, there exists rk ∈ σ t − ε, σ t such that M t, 1/2 rk 1/2 M t, rk ,...

متن کامل

Orlicz Spaces and Nonlinear Elliptic Eigenvalue Problems

Nonlinear elliptic differential equations of order m acting in a space of m dimensions often occupy a special position in more general theories. In this paper we shall study one aspect of this situation. The nonlinear problem under consideration will be the variational approach to eigenvalue problems for nonlinear elliptic partial differential equations as developed by the author in [l], [2], [...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ??????????? ??????????. ??????????????? ???????????

سال: 2023

ISSN: ['2413-3639']

DOI: https://doi.org/10.22363/2413-3639-2023-69-1-98-115